
“Lecture notes” for Lie theory spring 2024 
 

In these notes I will write down a plan for the course in Lie theory that is being held at Campus Førde 

for the robotics group and mathematicians on campus. The course is initially heavily inspired by the 

compendium of Brian Hall “An Elementary Introduction to Groups and Representations» that is open 

on arXiv, https://arxiv.org/abs/math-ph/0005032. 

First session 
We aim to go through some basics of abstract algebra that are required for further exploration of Lie 

theory.  

What is a Lie group? 
Let us start in medias res.  

Definition (Lie Group): 

A Lie group is a differentiable manifold 𝐺 that also is a group such that the group operation 

∗ ∶ 𝐺 × 𝐺 → 𝐺, 

and its inverse 𝑔 → 𝑔−1 is differentiable. 

So what is a group then? 
This first session will mostly be about groups. So what is this strange and useful object? 

Definition (group): 

A group is a set 𝐺 and an operation  

∗ ∶ 𝐺 × 𝐺 → 𝐺, 

such that the following holds: 

1. Associativity: For 𝑔, ℎ, 𝑖 ∈ 𝐺 we have (𝑔 ∗ ℎ) ∗ 𝑖 = 𝑔 ∗ (ℎ ∗ 𝑖). 

2. Identity: There exists an identity element 𝑒 ∈ 𝐺 such that 𝑔 ∗ 𝑒 = 𝑒 ∗ 𝑔 = 𝑔 for all 𝑔 ∈ 𝐺. 

3. Inverse: To each element 𝑔 ∈ 𝐺 there exists an inverse 𝑔−1 such that 𝑔 ∗ 𝑔−1 = 𝑔−1 ∗ 𝑔 = 𝑒. 

 

Note that the three requirements for (𝐺,∗) to be a group are called the group axioms. It is also 

implied with from ∗ ∶ 𝐺 × 𝐺 → 𝐺, that the group is closed under the operation, i.e., if 𝑔 ∈ 𝐺 and ℎ ∈

𝐺, then 𝑔 ∗ ℎ ∈ 𝐺. 

Extra definition (Abelian group) (Yes, after the Norwegian mathematician Niels Henrik Abel) 

If a group is commutative under the operation, i.e., 𝑔 ∗ ℎ = ℎ ∗ 𝑔 for all 𝑔, ℎ ∈ 𝐺, then the group is 

called an abelian group. 

About the ∗ 

I will eventually forget to write the operation symbol ∗. Therefore, we will make the usual convention 

that if two letters are written next to each other it is implied that there has happened an operation 

between them, 𝑔 ∗ ℎ = 𝑔ℎ. 



Some examples of groups 
1. The trivial group: The set with only one element, 𝑒, is a group where the group operation is 

defined by 𝑒𝑒 = 𝑒. 

“Proof that the trivial group is a group”: 

Let us call the group 𝑇 = {𝑒}, and check that all of the axioms are satisfied. First off all, the group is 

closed under the operation as 𝑒𝑒 = 𝑒 ∈ 𝑇.  

Associativity: (𝑒𝑒)𝑒 = 𝑒𝑒 = 𝑒(𝑒𝑒). 

Identity: 𝑒𝑒 = 𝑒 for all 𝑒 ∈ 𝑇 as only 𝑒 is in 𝑇. 

Inverse: 𝑒 is the inverse of 𝑒, therefore alle elements of 𝑇 has an inverse, 

2. The integers under addition, (ℤ, +): The set of integers form a group with addition + as the 

group operation. 

In-between exercise – Talk to your neighbor and convince yourself (prove) that the trivial group is a 

group. In other words, check that the group axioms are satisfied and that the group is closed under 

the group operation. 

3. The real numbers (ℝ, +) and real-valued vectors (ℝ𝑛, +) under addition. 

4. Nonzero real numbers under multiplication (ℝ+,⋅). 

5. Non-zero Complex numbers under multiplication (ℂ+,⋅). 

6. Complex numbers of absolute value one under multiplication 𝑆1. 

7. Invertible matrices under matrix multiplication 𝐺𝐿(𝑛, ℝ), this group is called the general 

linear group. 

8. The set of matrices with determinant one is a group under matrix multiplication, 𝑆𝐿(𝑛, ℝ). 

This is called the special linear group. 

9. Integers modulo 𝑛, ℤ𝑛. 

10. Permutation group. The set of one-to-one maps from {1,2, … , 𝑛} onto itself is a group under 

function composition (not important for us, but quite fun).  

Exercise break: 

Split the participants into groups of two that will together prove that selections of the groups above 

are groups. Determine which of the groups are abelian. 

Show that ℤ not is a group under multiplication. 

Is ℝ+ a group under the operation 𝑎 ∗ 𝑏 = √𝑎𝑏. 

Properties of groups: 
1. The identity in a group is unique. 

Proof: Let 𝐺 be a group and assume that there exist two elements 𝑒 ∈ 𝐺 and 𝑓 ∈ 𝐺 such that 

𝑒𝑔 = 𝑔 = 𝑓𝑔 for all 𝑔 ∈ 𝐺. We then necessarily have that 𝑒 = 𝑒𝑓 = 𝑓. 

2. Each element in a group has a unique inverse. 

Exercise. 

3. In groups it is sufficient with 𝑔ℎ = 𝑒 to be sure that ℎ is the unique inverse of 𝑔. 

Proof: Let 𝑔, ℎ ∈ 𝐺 be such that 𝑔ℎ = 𝑒. We can now multiply both sides by the inverse of 𝑔, 

𝑔−1(𝑔ℎ) = 𝑔−1𝑒. Then we have (by associativity and multiplication with identity) that ℎ =

𝑔−1. 



4. The inverse of the inverse is the element itself, (𝑔−1)−1 = 𝑔. 

Exercise. 

Subgroups 
Definition (subgroup): 

A subgroup 𝐻 of a group 𝐺 is a subset such that 𝐻 is itself a group under the same operation as 𝐺. 

One only needs to check the following conditions: 

1. The identity is in 𝐻. 

2. If ℎ ∈ 𝐻 then ℎ−1 ∈ 𝐻. 

3. 𝐻 is closed, i.e., if ℎ1, ℎ2 ∈ 𝐻 then ℎ1ℎ2 ∈ 𝐻.  

Examples: 

1. ℤ under addition is a subgroup of ℝ under addition. 

2. 𝑆1 is a subgroup of ℂ+ 

3. 𝑆𝐿(𝑛, ℝ) is a subgroup of 𝐺𝐿(𝑛, ℝ). 

Exercise: Show that this is true. 

Maps between groups (homomorphisms) 
We will now consider what happens when we assign elements of groups to each other using a special 

type of maps called a homomorphism. 

Definition (homomorphisms): 

Let 𝐺 and 𝐻 be groups. A map 𝜙 ∶  𝐺 → 𝐻 is called a homomorphism if 𝜙(𝑔1𝑔2) = 𝜙(𝑔1)𝜙(𝑔2). 

Note that the group operations inside 𝜙 and outside 𝜙 are not (necessarily) the same as they can be 

operations on different groups.  

If a homomorphism is bijective, it is called an isomorphism. If there exist an isomorphism between 

two groups, they are called isomorphic. Two groups that are isomorphic somehow act the same as 

groups, although they are not strictly the same. 

An isomorphism of a group with itself is called an automorphism. 

Proposition (Important fact in everyday normal guy’s language): 

Identities and inverses are preserved through homomorphisms. I.e., 𝜙(𝑒𝑔) = 𝑒ℎ and 𝜙(𝑔−1) =

(𝜙(𝑔))
−1

. 

Proof. Exercise 

Definition (Kernel): 

The kernel of a homomorphism 𝜙: 𝐺 → 𝐻 is the subset ker(𝜙) ⊆ 𝐺 such that 𝜙(𝑔) = 𝑒ℎ . 

The kernel of a homomorphism is a subgroup of 𝐺. (This can easily be verified). 

Proposition: If a kernel of a homomorphism only includes the identity element, then the 

homomorphism is injective (i.e., no two elements are sent to the same element by the 

homomorphism).  



Proof. Assume that ker(𝜙) = 𝑒𝑔 for 𝜙: 𝐺 → 𝐻. Let now 𝑔1, 𝑔2 ∈ 𝐺 be such that 𝜙(𝑔1) = 𝜙(𝑔2). We 

then have 𝑒ℎ =  𝜙(𝑔1)𝜙(𝑔1)−1 = 𝜙(𝑔2)𝜙(𝑔1)−1 = 𝜙(𝑔2𝑔1
−1), i.e., 𝑔2𝑔1

−1 ∈ ker(𝜙). Since 

ker(𝜙) = 𝑒𝑔 we have that 𝑔2𝑔1
−1 = 𝑒𝑔 and by the uniqueness of the inverse we have that 𝑔1 = 𝑔2. 

(René Des)Cartesian products: 

Let 𝐺 and 𝐻 be two groups. Then the Cartesian product 𝐺 × 𝐻 with the product (𝑔1, ℎ1)(𝑔2, ℎ2) =

(𝑔1𝑔2, ℎ1ℎ2) is itself a group.  

Both 𝐺 and 𝐻 are isomorphic to subgroups of 𝐺 × 𝐻 by fixing one element in the opposite group. 

If there is more time left 
We look at exercises 2, 5, 8 (what about 𝑆𝐿(𝑛, ℝ)?) and 13 from the compendium. 

 

 

Second session – Matrix Lie groups 
In this session we will define what a matrix Lie group is (it is in some way easier to define that going 

through the whole process of manifolds), then we will see some examples and non-examples, look at 

lie group homomorphisms and finally state that all matrix Lie groups also are Lie groups (a not 

completely trivial result). 

Definition (Matrix Lie group) 

A matrix Lie group is a subgroup 𝐻 of 𝐺𝐿(𝑛, ℂ) with the property that any convergent sequence in 𝐻 

either converges to a matrix in 𝐻 or the matrix is not invertible (not in 𝐺𝐿(𝑛, ℂ)). 

Note 1: Convergence here, means elementwise convergence with the usual definition of limits (𝜖/𝛿). 

Note 2: Saying that a subgroup 𝐻 of 𝐺𝐿(𝑛, ℂ) is a matrix Lie group is the same as saying that 𝐻 is 

closed in 𝐺𝐿(𝑛, ℂ). It needs however not be closed in the set of all matrices, although many are.  

Note 3: To be able to talk about topological properties of Matrix Lie Groups (open/closed sets, 

continuous functions, differentiability) we can identify the space of 𝑛 × 𝑛 matrices with the space 

ℂ𝑛2
 and its usual topology (defines as one would imagine, extrapolated from 1, 2 and 3 dimensional 

real space).   

A counter-example 
A subgroup of 𝑮𝑳(𝒏, ℂ) that is not a matrix Lie group is the group of all invertible matrices with 

rational entries. The set is clearly a subgroup (multiplication and addition of rational numbers are still 

rational), but every irrational number can be written as a limit of rational numbers (a math fact), 

hence there are sequences of that converge in 𝐺𝐿(𝑛, ℂ) but not to elements of the subgroup. This 

counterexample can also be traced back to the fact that subgroups of rational numbers are not Lie 

groups as they cannot be manifolds (not locally similar enough to real numbers).  

Examples 
Here follows a list of examples of matrix Lie groups. 

1. The general linear groups: 𝐺𝐿(𝑛, ℝ) and 𝐺𝐿(𝑛, ℂ). 

Exercise: Prove that these are matrix Lie groups.  



2. The special Linear groups: 𝑆𝐿(𝑛, ℝ), and 𝑆𝐿(𝑛, ℂ). 

Proof: Both groups are subgroups of the general linear groups. Moreover, the determinant is 

a continuous function, hence the limit of matrices with unit determinant also needs to have 

unit determinant. 

3. The orthogonal and special orthogonal groups, 𝑂(𝑛), and 𝑆𝑂(𝑛). These are subgroups of 

𝐺𝐿(𝑛, ℝ). 

Reminder: Orthogonal matrices are those with orthonormal columns. The orthogonal group 

consist of those. The special orthonormal group is the subgroup of the orthonormal group 

with determinant equal to one. The proof that these are matrix Lie groups are the same as 

for the special linear group, i.e., the conditions to be in these groups are continuous. 

Exercise 6 in hall for classification. 

4. The unitary and special unitary groups, 𝑈(𝑛), and 𝑆𝑈(𝑛). These are the complex versions of 

𝑂(𝑛) and 𝑆𝑂(𝑛).  

Note: There is one very important distinction between the orthogonal and the unitary 

groups. The determinant of matrices in the unitary group has complex modulus equal to one, 

i.e., |det 𝐴| = 1, while the matrices in the orthogonal group has determinants with “real 

modulus” (absolute value) equal to one. Absolute value equal to one means 1 or -1, while 

complex modulus equal to one governs the whole unit circle. Therefore the “size” difference 

between 𝑈(𝑛) and 𝑆𝑈(𝑛) is greater than that of 𝑂(𝑛) and 𝑆𝑂(𝑛). In fact, while considered 

as manifolds 𝑈(𝑛) is of one dimension more than 𝑆𝑈(𝑛), while 𝑂(𝑛) and 𝑆𝑂(𝑛) are of the 

same dimension.  

Exercise 8 in Hall. 

5. The groups ℝ∗, ℂ∗, 𝑆1, ℝ, and ℝ𝑛 can all be shown to be isomorphic to matrix Lie groups. 

Exercise: Prove it! Hint: The groups they are isomorphic to have all been defined above.  

6. The group of nonzero quaternions ℍ. 

It is isomorphic to the subgroup of 𝐺𝐿(2, 𝑛) with matrices of the form (
𝑥 𝑦

−𝑦̅ 𝑥̅) with 

isomorphism 

𝜙(𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘) = (
𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖

−𝑐 + 𝑑𝑖 𝑎 − 𝑏𝑖
). 

Exercise: Should we try to show that the group of nonzero quaternions indeed is a group? 

Furthermore, that the isomorphism actually is an isomorphism? 

7. The group of unit quaternions are isomorphic to 𝑆𝑈(2). 

The same isomorphism as the above does the trick. In other words, if we understand the 

matrix Lie group 𝑆𝑈(2) we can also understand the group of unit quaternions that can act on 

three-dimensional space to produce any rotation. 

8. The Euclidean and the special Euclidean groups 𝐸(𝑛), 𝑆𝐸(𝑛). The Euclidean group is the 

group of all distance preserving bijections of ℝ𝑛 to itself. It also turns out that any element in 

𝐸(𝑛) is of the form  

𝑓(𝑣⃗) = 𝑅𝑣⃗ + 𝑡, 

where 𝑅 ∈ 𝑂(𝑛) and 𝑡 ∈ ℝ𝑛. For this reason, the Euclidean group is also often called the 

group of Rigid transformations. It does however not preserve orientations, and for that 

reason the special Euclidean group might be even more often considered. It is denoted 



𝑆𝐸(𝑛), and often called the group of rigid body motions (or just the group of rigid motions) 

and is the subgroup of 𝐸(𝑛) with 𝑅 ∈ 𝑆𝑂(𝑛). 

Exercise:  

1. Show that 𝐸(𝑛) is a group with function composition as the operation. 

2. 𝐸(𝑛) is not, directly, a matrix Lie group as it is not a subgroup of 𝐺𝐿(𝑛, ℂ). Find a 

suitable subgroup of 𝐺𝐿(𝑛 + 1, ℂ) and an isomorphism showing that 𝐸(𝑛) (and 

thereby also 𝑆𝐸(𝑛)) is isomorphic to a matrix Lie group, you then also need to 

argue that this subgroup of 𝐺𝐿(𝑛 + 1, ℂ) has the closedness property that is 

required to be a matrix Lie group.  

Secret hint: consider matrices of the form 

(𝑅 𝑡
0 1

). 

Definition (Lie group homomorphism) 

A homomorphism between two matrix Lie groups 𝐺 and 𝐻 is a Lie group homomorphism if the 

homomorphism is continuous. If the homomorphism additionally is an isomorphism and the inverse 

map is continuous then it is called a Lie group isomorphism. 

Theorem: All matrix Lie groups are Lie groups. 

Third session 
The third session will be a proper exploration of rotations in 2D (𝑆1, 𝑆𝑂(2)), rotations in 3D 

quaternions, 𝑆𝑈(2), 𝑆3, 𝑆𝑂(3), and of the rigid body motions. 

A vague proof that 𝑆𝑈(2) is twice as big as 𝑆𝑂(3). 

Fourth session – The exponential map 
The session starts with some work on the Rigid motions (the exercises above). Then we explore the 

unit circle and its Lie algebra before we delve into the theory on exponential maps.  

We are now going to turn our attention towards what is known as the Lie algebra, which is a linear 

space (a vector space) that comes as a pair with any Lie group, with an additional product structure 

(called the bracket). The way that we are going to define this might potentially be a bit different as to 

how we are going to think about it, but it will probably still be quite useful to see it done in this way. 

At least it helped be, in comparison to pure handwaving1. 

The goal here will be to define the Lie algebra as the space that maps into a matrix Lie group through 

the exponential map. Therefore, we begin with the exponential map, and a small trip down memory 

lane. Recall (one of) the definition(s) of the Euler number 

𝑒 =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ ⋯ = ∑

1

𝑛!

∞

𝑛=0

≈ 2,718281828. 

The first definition should probably be  

 
1 Handwaving is mathematical terminology for speaking/writing about things while not writing them down with 
proper mathematical notation and proofs. Unfortunately, the definition of being handwavy is itself handwavy, 
and it might vary significantly from mathematician to mathematician what is considered to be handwavy and 
what is considered to be rigorous (the opposite). Moreover, me mentioning handwaving above is pure 
nonsense as most mathematician will call this entire note for handwaving, and there is no way we are going to 
do Lie algebras rigorously. 



𝑒 = lim
𝑛→∞

(1 +
1

𝑛
)

𝑛

. 

A crazy number with some properties that are found to be useful in all of mathematics. Naturally, in 

Lie theory as well. One of these properties is that treating the Euler number as the base of 

exponentiation as a function lead to the exponential function which is defined for real and complex 

numbers as 

𝑒𝑥 = exp(𝑥) = 1 + 𝑥 +
𝑥2

2
+ ⋯ +

𝑥𝑛

𝑛!
+ ⋯ = ∑

𝑥𝑛

𝑛!

∞

𝑛=0

. 

The exponential function can be defined on any set of objects that can be operated (multiplied) 

together in the same way. Specifically, we can do it with matrices 𝑋: 

Exp(𝑋) = ∑
𝑋𝑛

𝑛!

∞

𝑛=0

. 

It is also customary to write 𝑒𝑋 = Exp(𝑋), but I am a bit sceptic to use that notation as it feels like all 

rules of powers should hold, and that is not entirely true. Therefore, in this text, I will only use 

Exp(𝑋) and it should be understood as the series presented above.  

Here, we will consider the exponential function on matrices, as we are concerned with matrix Lie 

groups. First, a list of properties of the exponential function Exp(𝑋) will be presented.  

Proposition: 

The following statements hold for the matrix exponential function: 

1. The matrix exponential is well-defined for all (square) matrices, i.e., the series ∑
𝑥𝑛

𝑛!
∞
𝑛  

converges for all square matrices 𝑋. In fact, the series is absolutely convergent (even 

stronger). 

2. Exp(0) = 𝐼. 

3. Exp(𝑋) is invertible and Exp(𝑋)−1 = Exp(𝑋−1). 

4. Exp((𝛼 + 𝛽)𝑋) = Exp(𝛼𝑋)Exp(𝛽𝑋) for all 𝛼, 𝛽 ∈ ℝ. 

5. (Exp(𝑋))
𝑚

= Exp(𝑚𝑋) for any 𝑚 ∈ ℕ. 

6. If  𝑋𝑌 = 𝑌𝑋 (𝑋 and 𝑌 commutes), then Exp(𝑋 + 𝑌) = Exp(𝑋)Exp(𝑌) = Exp(𝑌)Exp(𝑋). 

7. If 𝐶 is invertible then Exp(𝐶𝑋𝐶−1) = 𝐶Exp(𝑋)𝐶−1. 

8. ||Exp(𝑋)|| ≤ Exp(||𝑋||). 

9. det(Exp(𝑋)) = etrace(𝑋) (Think a bit about how crazy this is, the left is a nightmare to 

compute, the right is trivial.) 

10. 
𝑑

𝑑𝑡
Exp(𝑡𝑋) = 𝑋Exp(𝑡𝑋) = Exp(𝑡𝑋)𝑋, for a parameter 𝑡 ∈ ℝ. 

Notice that 3., 4., and 5., all are results of 6. 

How do we compute the exponential map of a matrix 
The practical answer is to be clever and find a formula. The general answer is the following: 

Let 𝑋 be any square matrix. Then it follows from the Jordan canonical form that 𝑋 can be written as 

the sum  

𝑋 = 𝑆 + 𝑁, 



where 𝑆 is diagonizable (𝑆 = 𝐶𝐷𝐶−1, with 𝐷 diagonal) and 𝑁 is nilpotent (𝑁𝑚 = 0, for some 𝑚 ∈ ℕ, 

and hence for all ℓ ≥ 𝑚). Moreover, 𝑆𝑁 = 𝑁𝑆. Therefore, by property 5 above 

Exp(𝑋) = Exp(𝑆 + 𝑁) = Exp(𝑆)Exp(𝑁). 

We can in other words compute the exponential of any matrix if we can compute it for diagonalizable 

and nilpotent matrices. For diagonalizable matrices we use property 6 above, and for nilpotent 

matrices we can compute it explicitly since the series expansion terminate after 𝑛 = 𝑚. 

Extra properties of the exponential map 
As with the “standard” definition of Euler’s number, or the exponential function for real numbers, we 

have a similar one for the Exponential function for matrices 

Exp(𝑋) = lim
𝑛→∞

(𝐼 +
𝑋

𝑛
)

𝑛

. 

There is also a formula, called “Lie’s formula” that states that 

Exp(𝑋 + 𝑌) = lim
𝑚→∞

(Exp (
𝑋

𝑚
) Exp (

𝑌

𝑚
))

𝑚

. 

 

The logarithmic function 
The exponential function also has an inverse function, namely the logarithmic function. This one is, as 

with all inverse functions, endowed in some mystery. However, we can make a general definition here 

as well through the following theorem. 

Theorem: 

The function 

Log(𝐴) = ∑ (−1)𝑚+1
(𝐴 − 𝐼)𝑚

𝑚

∞

𝑚=1

 

is well-defined and continuous for all square matrices with complex entries with ||𝐼 − 𝐴|| <

1. Moreover, Log(𝐴) is real if 𝐴 is real and 

Exp(Log(𝐴)) = 𝐴, 

for 𝐴 with  ||𝐼 − 𝐴|| < 1, and 

Log(Exp(𝑋)) = 𝑋, 

for ||𝑋|| < log 2. 

Note that due to property 8 about the exponential function we have ||𝐼 − Exp(𝑋)|| < 1 whenever 

||𝑋|| < log 2.  

Session 5 – The Lie algebra 
 The Lie algebra 𝔤 of the matrix Lie group 𝐺 is the set of all matrices 𝑋 such that  

Exp(𝑡𝑋) ∈ 𝐺, ∀𝑡 ∈ ℝ. 

The Lie algebras of some Lie groups: 



1. The general linear groups 𝐺𝐿(𝑛, ℂ), 𝐺𝐿(𝑛, ℝ). For 𝑋 to be in the Lie algebra of 𝐺𝐿(𝑛, ℂ) we 

need exp(𝑡𝑋) ∈ 𝐺𝐿(𝑛, ℂ) for all 𝑡 ∈ ℝ. However, by property 3 for the exponential function 

this is true for all complex 𝑛 × 𝑛 matrices 𝑋. This Lie algebra is denoted by 𝔤𝔩(𝑛, ℂ). The same 

holds for 𝐺𝐿(𝑛, ℝ) and the Lie algebra is then called 𝔤𝔩(𝑛, ℝ). 

2. The special linear groups 𝑆𝐿(𝑛, ℂ), 𝑆𝐿(𝑛, ℝ). As above the requirement for the exponential of 

𝑋 to be invertible always holds, but here we also require the determinant of the exponential 

to be 1, det(Exp(𝑡𝑋)) = 1 for all 𝑡 ∈ ℝ. This is governed by property 9 for the exponential 

map, i.e.,  

det(Exp(𝑡𝑋)) = 𝑒trace(𝑡𝑋) = 𝑒t⋅trace(𝑋) = 1. 

 This implies that 𝑡 ⋅ trace(𝑋) = 0 for all 𝑡 ∈ ℝ, which again implies that trace(𝑋) = 0. 

 In other words, 𝔰𝔩(𝑛, ℂ) and 𝔰𝔩(𝑛, ℝ) consists off all 𝑛 × 𝑛 matrices with zero trace. 

3. See the appendix for the Lie algebra of the special unitary group.  

4. The Euclidean groups: 𝐸(𝑛) and 𝑆𝐸(𝑛). Exercise. 

Session 6 – More on the Lie algebra 
We start by discussing the Lie algebra of the special unitary group. Then we have as an exercise to 

compute the one for the Euclidean group.  

Properties of the Lie algebra. 
1. If 𝑋 ∈ 𝔤 then 𝑠𝑋 ∈ 𝔤 for all 𝑠 ∈ ℝ. 

2. If 𝑋, 𝑌 ∈ 𝔤 then 𝑋 + 𝑌 ∈ 𝔤. 

3. If 𝑋, 𝑌 ∈ 𝔤 then 𝑋𝑌 − 𝑌𝑋 ∈ 𝔤. 

“Proof”: 

The first is true by the definition of the Lie algebra. The second one is true by the Lie product formula, 

and the third is more complicated. 

Definition (bracket/commutator): 
The map 

[⋅,⋅]: 𝔤 × 𝔤 → 𝔤 

defined by [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 is called the bracket or the commutator and has the following 

properties: 

1. It is bilinear (linear in each component). 

2. It is skew-symmetric [𝐴, 𝐵] = −[𝐵, 𝐴]. 

3. It upholds the Jacobi identity: [𝐴, [𝐵, 𝐶]] + [𝐶, [𝐴, 𝐵]] + [𝐵, [𝐶, 𝐴]] = 0. 

Exercise: What is the bracket operation on 𝔰𝔲(2)? Hint: It very closely resembles a well-known 

product. 

General Lie algebras 
It is common to define Lie algebras without the stick necessity of an underlying Lie group. A Lie 

algebra is in that regard a vector space, 𝔤, together with a bilinear (bracket) map [⋅,⋅]: 𝔤 × 𝔤 → 𝔤 with 

the following properties 

1. Skew-symmetry: [𝐴, 𝐵] = −[𝐵, 𝐴]. 

2. Jakobi identity: [𝐴, [𝐵, 𝐶]] + [𝐶, [𝐴, 𝐵]] + [𝐵, [𝐶, 𝐴]] = 0. 



The first property also implies that [𝐴, 𝐴]  = 0. 

 

Lie algebra homomorphisms 

Let 𝔤 and 𝔥 be two Lie algebras. A Lie algebra homomorphism is a linear map  𝜙̃ between 𝔤 and 𝔥 

such that 

𝜙̃([𝐴, 𝐵]) = [𝜙̃(𝐴), 𝜙̃(𝐵)]. 

The induced Lia algebra homomorphism 

Let 𝐺 and 𝐻 be Lie groups with Lie algebras 𝔤 and 𝔥, respectively. Let now 𝜙 be a Lie group 

homomorphism from 𝐺 to 𝐻. Then, there exists a unique Lie algebra homomorphism 𝜙̃ such that 

𝜙(Exp(𝑋)) = Exp (𝜙̃(𝑋)), 

Moreover, 

a) 𝜙̃(𝐴𝑋𝐴−1) = 𝜙(𝐴)𝜙̃(𝑋)𝜙(𝐴)−1 for all 𝐴 ∈ 𝐺, and 𝑋 ∈ 𝔤. 

b) 𝜙̃(𝑋) =
𝑑

𝑑𝑡
|𝑡=0𝜙 ((Exp(𝑡𝑋))), for all 𝑋 ∈ 𝔤. 

 

As a result, the Lie algebras of isomorphic Lie groups are isomorphic. And the isomorphisms can be 

computed using b). The converse is only sometimes true: 

Theorem: 

If 𝐺 and 𝐻 are simply connected, 𝔤 and 𝔥 are their related Lie algebras (respectively), and 𝜙̃ is a Lie 

algebra homomorphism from 𝔤 to 𝔥, then 𝜙̃ is induced by a homomorphism from 𝐺 to 𝐻.  

Exercise: 

Consider: 

- 𝑆𝑂(2), 𝑂(2) and ℝ.  

- 𝑆𝑈(2), 𝑆𝑂(3) and 𝑂(3). 

Compute their Lie algebras (with brackets) and discuss them in relation to the above theorem. 

Appendix and other thoughts 
Here, a range of topics will be written down until they eventually, possibly, find their way into the 

main text. 

About the unit circle and its group structure 
The unit circle (for example described through the complex numbers) 

𝑆1 = {𝑧 ∈ ℂ | |𝑧| = 1} 

is a group under multiplication ⋅. Let us check that the closedness and the axioms for being a group 

are satisfied: 

First, remember that all elements in 𝑆1 can be described by an angle through Euler’s formula 



𝑧 ∈ 𝑆1 ⇒ ∃𝜃 ∈ ℝ such that 𝑧 = 𝑒𝑖𝜋𝜃. 

Now, given three arbitrary elements of 𝑆1, 𝑧1 = 𝑒𝑖𝜋𝜃1, 𝑧2 = 𝑒𝑖𝜋𝜃2  and 𝑧3 = 𝑒𝑖𝜋𝜃3 , we can first 

multiply two of them together to check that the group is closed under multiplication 

𝑧1 ⋅ 𝑧2 = 𝑒𝑖𝜋𝜃1 ⋅ 𝑒𝑖𝜋𝜃2 = 𝑒𝑖𝜋(𝜃1+𝜃2) ∈ 𝑆1. 

Then we have the three axioms: 

1. Associativity:  

(𝑧1 ⋅ 𝑧2) ⋅ 𝑧3 = (𝑒𝑖𝜋𝜃1 ⋅ 𝑒𝑖𝜋𝜃2) ⋅ 𝑒𝑖𝜋𝜃3 = 𝑒𝑖𝜋(𝜃1+𝜃2) ⋅ 𝑒𝑖𝜋𝜃3 = 𝑒𝑖𝜋(𝜃1+𝜃2+𝜃3) = 𝑒𝑖𝜋𝜃1 ⋅ (𝑒𝑖𝜋𝜃2 ⋅ 𝑒𝑖𝜋𝜃3)

= 𝑧1 ⋅ (𝑧2 ⋅ 𝑧3). 

2. Identity: 𝑧 = 1 = 𝑒0. 

3. Inverse: Given 𝑧 = 𝑒𝑖𝜋𝜃, the inverse is given by 𝑧−1 = 𝑒−𝑖𝜋𝜃. 

And what is a differentiable (smooth) manifold? 
That is a bit more work to define, but we will manage.  

A manifold is a (topological) space that locally is equivalent (homeomorphic) to Euclidean space (ℝ𝑛). 

Many fancy words, but the important property is that around every point on the manifold there 

should exist a neighborhood and an invertible continuous map (whose inverse is also continuous) 

from that neighborhood to a subset of ℝ𝑛. 

Sidenote on topological spaces 

A topological space is a set equipped with (rules for how to define) open sets (closed sets are 

complements of the open sets). In that regard 𝑆1 is a topological space where all sets of the form 

(𝑧1, 𝑧2) ≔ {𝑧 = 𝑒𝑖𝜋𝜃 ∈ 𝑆1 | 𝜃 ∈ (𝜃1, 𝜃2)} (and unions of them) are open sets. 

 

The unit circle 𝑆1 is a manifold 

We can easily check that 𝑆1 is a manifold. We already saw that it is a topological space. Now we just 

need to see that it is locally homeomorphic to Euclidean space. Given a point 𝑧 ∈ 𝑆1, we can always 

choose a small neighborhood (a small open set as defined above, important that the angles are less 

than 𝜋 apart) around the point (𝑧1, 𝑧2) = (𝑒𝑖𝜋𝜃1 , 𝑒𝑖𝜋𝜃2).  

About unit quaternions, SU(2), and the Lie algebra 
The Lie algebra for 𝑆𝑈(2) is denoted by 𝔰𝔲(2), and are found by using the characteristics of being a 

matrix in 𝑆𝑈(2). 

Recall; a matrix is in 𝑆𝑈(2) if, and only if, it is Unitary (𝑈∗𝑈 = 𝐼)  and its determinant is one. In other 

words, an element 𝑋 is in its Lie algebra  𝔰𝔲(2) if 

Exp(𝑡𝑋)∗ Exp(𝑡𝑋) = 𝐼 

and 

det(Exp(𝑡𝑋)) = 1 

for all 𝑡 ∈ ℝ. 

Differentiating the first expression and setting 𝑡 = 0 we see that 

𝑋∗ = −𝑋. 



In the other direction we see that  

𝑈∗𝑈 = 𝐼 ⇔ 𝑈∗ = 𝑈−1, 

and therefore 

Exp(𝑡𝑋)∗ = Exp(𝑡𝑋)−1. 

By theorem … this is equivalent to 

Exp(𝑡𝑋∗) = Exp(−𝑡𝑋).  

Therefore, we also have the other direction that if 𝑋 = −𝑋∗ then Exp(𝑡𝑋)∗ Exp(𝑡𝑋) = 𝐼. 

A matrix of the form 𝑋∗ = −𝑋 is called skew-Hermitian (Hermitian is the complex conjugate word for 

symmetric). 

The other requirement, that det(Exp(𝑡𝑋)) = 1 is resolved by the theorem saying that 

det(Exp(𝑋)) = 𝑒trace(𝑋). 

Now, if det(Exp(𝑡𝑋)) = 1, then e(trace(𝑡𝑋)) = e(t⋅trace(𝑋)) = 1 which implies that  

𝑡 ⋅ trace(𝑋) = 2𝜋𝑖 ⋅ 𝑛 

For all 𝑡 ∈ ℝ and (possibly differing 𝑛 ∈ ℤ). This can only happen if trace(𝑋) = 0. 

Hence 𝔰𝔲(2) is the vector space of 2 × 2 matrices that are skew-Hermitian and have zero trace. It is 

easily verifiable that these matrices have the form 

(
𝑏𝑖 𝑐 + 𝑑𝑖

−𝑐 + 𝑑𝑖 −𝑏𝑖
) 

For 𝑏, 𝑐, 𝑑 ∈ ℝ. We can then make a basis for the Lie algebra using the Pauli matrices 

𝜎1 = (
0 1
1 0

) , 𝜎2 = (
0 −𝑖
𝑖 0

) , and 𝜎3 = (
1 0
0 −1

), 

where the basis for 𝔰𝔲(2) is given by 

𝑖𝜎1 = (
0 𝑖
𝑖 0

) , 𝑖𝜎2 = (
0 1

−1 0
) , and 𝑖𝜎3 = (

𝑖 0
0 −𝑖

). 

It is also VERY interesting to note that as any quaternion 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 can be written on the 

matrix form  

(
𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖

−𝑐 + 𝑑𝑖 𝑎 − 𝑏𝑖
). 

the pure quaternions and the vector space 𝔰𝔲(2) are isomorphic as algebras (they function exactly 

the same in terms of addition, multiplication and multiplication by scalar). This equivalence will be 

made important know when constructing the exponential map from 𝔰𝔲(2) to 𝑆𝑈(2). Moreover, the 

space 𝔰𝔲(2) is isomorphic to ℝ3 as vector spaces. 

Constructing the exponential map 
The exponential map takes any element in 𝔰𝔲(2), which we 2now can write as a general pure 

quaternion as 𝑝 = 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, and sends it to 𝑆𝑈(2). It functions as  



exp(𝑝) = ∑
𝑝𝑛

𝑛!

∞

𝑛=0

. 

We will now do some clever tricks. First of all, a pure quaternion can be written as  

𝑝 = 𝜃 𝑣⃗ 

Where 𝑣⃗ is just the normalized version of 𝑝, i.e., 𝑣⃗ =
𝑏𝑖+𝑐𝑗+𝑑𝑘

√𝑏2+𝑐2+𝑑2
 and 𝜃 = √𝑏2 + 𝑐2 + 𝑑2. 

Notice now the exponentiation pattern for unit pure quaternions: 

𝑣⃗0 = 1, 𝑣⃗1 = 𝑣⃗, 𝑣⃗2 = −1, 𝑣⃗3 = −𝑣⃗, 𝑣⃗4 = 1, … 

Hence, we can write the exponential function as  

Exp(𝑝) = ∑
𝜃𝑛

𝑛!
𝑣⃗𝑛

∞

𝑛=0

= ∑
(−1)𝑛𝜃2𝑛

(2𝑛)!

∞

𝑛=0

+ 𝑣⃗ ∑
(−1)𝑛𝜃2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

= cos(𝜃) + sin(𝜃) 𝑣⃗ . 

Note how this gives us a unit quaternion (i.e., an element of 𝑆𝑈(2) for all pure quaternions). 

Constructing the logarithmic map 
The logarithmic map should be the inverse of the exponential map, i.e., log(Exp(𝑝)) = 𝑝 and 

Exp(log(𝑞)) = 𝑞. 

Written down carefully, we would want it to take a unit quaternion 

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, 

and make it into versor form 

𝑞 = 𝑎 + 𝑟𝑣⃗, 

Where 𝑟 = √𝑏2 + 𝑐2 + 𝑑2, and 𝑣⃗ =
(𝑏𝑖+𝑐𝑗+𝑑𝑘)

𝑟
. 

Then it should find the angle 𝜃, such that 𝑎 = cos(𝜃) and 𝑟 = sin(𝜃). Notice that this angle always 

will be in one of the first two quadrants as 𝑟 ≥ 0. The angle can then be found by the rule 

𝜃 =  {
arcsin(𝑟) , 𝑎 ≥ 0

𝜋 − arcsin(𝑟) , 𝑎 < 0
. 

 

By doing so, we guarantee that  

𝑞 = cos(𝜃) + sin(𝜃) 𝑣⃗, 

and we can define log(𝑞) : = 𝜃𝑣⃗. 

 

 

 

 


